$$\frac{\S 9. \text{ Differential equations}}{\S 9.1 \text{ Examples}}$$

$$\frac{\S 9.1 \text{ Examples}}{\texttt{Example 9.1}} (Population growth):$$
A population grows at a rate proportional to the size of the population (assumption):

$$t = \text{ time}$$

$$P = \text{ the number of individuals in the population}$$

$$\Rightarrow \frac{dP}{dt} = \text{ rate of growth} \qquad (1)$$
Assumption $\Rightarrow \frac{dP}{dt} = \text{KP}$
where K is the proportionality constant.
We have: $P(t) > 0 \forall t$
Thus for $k > 0: P'(t) > 0 \forall t$
Solution (see Example 5.13): $P(t) = Ce^{Kt}$
then $P'(t) = C(Ke^{Kt}) = K(Ce^{Kt}) = KP(t)$

$$\Rightarrow family of solutions$$

Putting t=0, we get
$$P(0) = Ce^{k(0)} = C$$

 \Rightarrow C is the unitial population $P(0)$.
Many populations have a "convying capacity"
M and start decreasing when they wit this
number:
 $\cdot \frac{dP}{dt} \sim kP$ if P is small $(\frac{P}{M} \ll 1)$
 $\cdot \frac{dP}{dt} = kP(1 - \frac{P}{M})$ (2)
"logistic differential equation"
(anotant solutions $P(t) = 0$ and $P(t) = M$ are
solutions ("equilibrium solutions").
P-0
 $= \frac{P-0}{2}$

$$\frac{\text{Definition 9.1}}{\text{Prive order ODE}}:$$
A first order "ordinary differential equation"
is an equation of the form:
 $F(x,y,y') = 0$ (4)
where F is some arbitrary function
and y is understood to be an unknown
function of x. For example,
 $y' = xy$
is of the form (4) with $F(xy,y') = y' - xy$.
A function $f(x)$ is called a "solutian" of
the differential equation if (4) is satisfied
with $y = f(x)$ and $y' = f'(x)$.
Example 9.2:
Show that every member of the family
of functions
 $Y = \frac{1+ce^{t}}{1-ce^{t}}$
is a solution of the differential equation
 $Y' = \frac{1}{2}(y^{2}-1)$.

Solution:
We use the quotient rule to differentiate:
$$y' = (1 - ce^{t})(ce^{t}) - (1 + ce^{t})(-ce^{t})$$

 $(1 - ce^{t})^{2}$

$$= \underbrace{ce^{t} - c^{2}e^{2t} + ce^{t} + c^{2}e^{2t}}_{(1 - ce^{t})^{2}} = \frac{2ce^{t}}{(1 - ce^{t})^{2}}$$

The right side of the differential equation becomes

$$\frac{1}{2}(\gamma^{2}-1) = \frac{1}{2}\left[\left(\frac{1+ce^{t}}{1-ce^{t}}\right)^{2} - 1\right] = \frac{1}{2}\left[\frac{(1+ce^{t})^{2}-(1-ce^{t})^{2}}{(1-ce^{t})^{2}}\right]$$
$$= \frac{1}{2} - \frac{4ce^{t}}{(1-ce^{t})^{2}} = -\frac{2ce^{t}}{(1-ce^{t})^{2}}$$

Therefore, for every value of c, the given
function is a solution of the differential
equation.

$$\frac{\text{Example 9.3} (\text{Initial value problem}):$$
Find a solution of the differential equation
 $Y' = \frac{1}{2}(Y^2 - 1)$ that satisfies the initial
condition $Y(0) = 2$.

Solution:
Substituting the values t=0 and y=2
into the formula

$$Y = \frac{1+ce^{t}}{1-ce^{t}}$$
from Example 7.1.3, we get

$$2 = \frac{1+ce^{0}}{1-ce^{0}} = \frac{1+c}{1-c}$$

$$c = \frac{1}{3} \text{ solves this equation } \Rightarrow y = \frac{1+\frac{1}{3}e^{t}}{1-\frac{1}{3}e^{t}} = \frac{3te^{t}}{3-e^{t}}$$

§9.2 Existence and Uniqueness Example 9.4 (Direction Fields): Suppose we are asked to sketch the graph of the solution of the initial value problem Y' = X + Y, Y(6) = 1slope at
(0,1) is 0+1=1 (0|)Slop at (x_1, y_2) is $x_2 + y_2$ ٥ slope at (x_{1}, y_{1}) is $x_{1} + \gamma_{1}$ We can also draw short line segments at a number of points (x, x) with slope x+y: This is called a "direction field". For instance, the line segnet through (1,2) has slope H2=3.

Definition 9.2:
Suppose we have a first-order differential
equation of the form
(1)
$$Y' = F(x, y)$$
 "normal form"
where $F(x, y)$ is a continuous function of
both its arguments simultaneously in some domain
D of the x-y plane.
The slope of the solution curve through (x, y)
is $F(x, y)$. Indicating such slopes an the
x-y-plane in terms of line segments gives
a direction field.
A solution or "integral" of (1) over the interval
x_6 $\leq x \leq x$, is a single-valued function $y(x)$
with a continuous first derivative $Y'(x)$
defined on $[x_0, x_1]$ such that for $x_0 \leq x \leq x$;
i) $(x, Y(x))$ is in D, whence $F(x, y(x))$
is defined
ii) $Y'(x) = F(x, y(x))$

$$\begin{array}{l} \underline{\operatorname{Definition} 9.3} (\operatorname{Zipschitz} \operatorname{condition}):\\ A function F(x, y) defined an a domain D is said to satisfy Zipschitz conditions with respect to y for the constant K>0 if for every x, y, y_2 such that $(x, y_i), (x, y_2)$ are in D:

$$\begin{aligned} & |F(x, y_i) - F(x, y_2)| &\leq K | y_i - y_2 | \quad (2) \end{aligned}$$

$$\begin{array}{l} \underline{\operatorname{Theorem} 9.1:} \\ \text{If the function } F(x, y) \text{ is continuous in both of its arguments and satisfies the Zipschitz condition fa y an the rectangle (R): $|x - x_0| \leq a, |y - y_0| \leq b, \end{aligned}$

$$\begin{array}{l} \operatorname{then} \text{ there exists a unique solution to the initial value problem } \\ & y' = F(x, y), \quad Y(x_0) = Y_0 \\ \operatorname{defined} an \text{ the interval } |x - x_0| \leq h, \\ \operatorname{defined} an \text{ the interval } |x - x_0| < h, \\ \operatorname{defined} x \\ & \operatorname{defined} x$$$$$$

Remark 9.1:

In other words, two integral curves cannot meet or intersect at any point of R. Observe that without the additional requirement of a Zipschitz condition uniqueness need not follow. For consider the differential equation $\frac{d\gamma}{dx} = \gamma^{\frac{1}{3}}$ $F(x, y) = y^{\frac{1}{3}}$ is continuous at (0,0). But there are two solutions passing through (0,0), namely i) $\gamma = O$ ii) $\begin{cases} \gamma = \left(\frac{1}{3}\times\right)^{3} \\ \gamma = 0 \qquad x \le 0 \end{cases}$ Y's does not satisfy the Zipschitz condition at Y=0: for $Y_1 = S_1$, $Y_2 = -S_1$, $\left| \frac{f(Y_1) - f(Y_2)}{Y_1 - Y_2} \right| = \frac{1}{8^{2}3}$ which is unbounded for 8 arbitrarily small.

§9.3 Solution Methods :
Definition 9.4 (linear ODEs):
A general first order ODE is called "linear"
if it can be written in the form

$$a_0(x)y' + q_1(x)y = b(x)$$
 (1)
where $a_0(x)$, $a_1(x)$, $b(x)$ are continuous functions
of x an some interval I.
Remark 9.2:
Equation (i) can be brought to normal form
if $a_0(x) \neq 0$ on I:
 $y' = q(x) - p(x)y$ (2)
where $p(x) = \frac{a_1(x)}{a_0(x)}$, $q(x) = \frac{b(x)}{a_0(x)}$.
Definition 9.5 (linear homogeneous eq.):
A linear first order ODE is homogeneous if
 $q(x) = 0$, namely,
 $\frac{dy}{dx} + p(x)y = 0$ (3)

Equation (2) is then called "linear inhomogeneous".

Yet now p(x) be continuous an an interval
I c R and let JCR be closed. Then

$$F(x,y) := -p(x)y$$
 is continuous in x and
satisfies the Zipschitz condition in y an
the vectangular area $R = Ix f$.
The $q.1$
 \Rightarrow I unique solution to (3) with
 $y(x_0) = y_0$ for $(x_0, y_0) \in Ix f$.
Proposition 9.1:
The solutions to (3) are parametrized by
 $y = t C_1 e^{-\int p(x) dx}$
where $C_1 \in \mathbb{R}$ is fixed through the initial
value.
Proof:
Equation (3) can be rewritten as
 $\frac{y'(x)}{y} = \frac{d}{dx} \log |y(x)| = -p(x)$.
Integration then gives
 $\log |y(x)| = -\int p(x) dx + C_1$
or $y = t C_1 e^{-\int p(x) dx}$, $C_1 = e^{C_2 > 0}$.

We next want to solve the general ase,
namely

$$\frac{dY}{dx} + p(x) Y = q(x) \quad (inhomogeneous
case) = Multiplication with a factor $\mu(x) \neq 0$ gives:
 $\mu(x) Y'(x) + \mu(x) p(x) Y(x) = \mu(x) q(x).$ (4)
Now choose $\mu(x)$ such that
 $\mu'(x) = p(x) \mu(x),$
i.e. $\mu(x)$ satisfies the linear homogeneous eq.
(solution given by Prop. 9.1)
 \Rightarrow eq. (4) becomes
 $\frac{d}{dx} \left[\mu(x) Y(x) \right] = \mu(x) q(x)$ (5)
Integration gives
 $\mu(x) Y = \int \mu(x) q(x) dx + C$
with C an arbitrary constant. Solving for X,
we then arrive at the following :
 $Y = \frac{1}{\mu(x)} \int \mu(x) q(x) dx + \frac{C}{\mu(x)} = Xp(x) + X_{H}(x)$ (6)
partials: "homogeneous"$$

is a solution to the linear inhomogeneous ODE (2) if n(x) is a solution to the homogeneous ODE n'(x) = p(x) n(x). Remark 9.3: Again, by Th. 9.1, the solution (6) is unique once C is fixed using the initial value Y(x_)=Y. Example 9.5: Y' + XY = X. This is a linear first order ODE in standard form with p(x) = q(x) = x. Solution: $\mathcal{M}(x) = e^{\int x \, dx} = e^{\frac{x^2}{2}}$ $\Rightarrow \frac{d}{dx} \left(e^{\frac{x^2}{2}} \right) = x e^{\frac{x^2}{2}}$ and after integration $e^{\frac{x^{2}}{2}} = \int x e^{\frac{x^{2}}{2}} dx + C = e^{\frac{x^{2}}{2}} + C$ $=) \gamma = l + (e^{-x_{1}})$ For the initial condition Y(0)=1 we get $\gamma = l_1$ (C=0); and for $\gamma(0)=0$ we get $\gamma = 1 + (q-1)e^{-x^{2}/2}$, (C=q-1).