§9. Differential equations
§9.1 Examples
Example 9.1 (Population growth):
A population grows at a rate proportional to the size of the population (assumption):
$t=$ time
$P=$ the number of individuals in the population
$\Rightarrow \frac{d P}{d t}=$ rate of growth
Assumption $\Rightarrow \frac{d P}{d t}=k P$
where k is the proportionality constant.
We have: $P(t)>0 \quad \forall t$
Thus for $k>0: P^{\prime}(t)>0 \forall t$
Solution (see Example 5.13): $P(t)=C e^{k+}$
then $P^{\prime}(t)=C\left(k e^{k t}\right)=k\left(C e^{k t}\right)=k P(t)$
\rightarrow family of solutions

for varying C

Putting $t=0$, we get $P(0)=C e^{k(0)}=C$
$\Rightarrow C$ is the innitial population $P(0)$.
Many populations have a "carrying capacity" M and start deereasing when they hit this number:

- $\frac{d P}{d t} \sim k P$ if P is small $\left(\frac{P}{M} \ll 1\right)$
- $\frac{d P}{d t}<0$ if $P>M$

$$
\begin{equation*}
\Rightarrow \quad \frac{d P}{d t}=k P\left(1-\frac{P}{M}\right) \tag{2}
\end{equation*}
$$

"logistic differential equation"
Constant solutions $P(t)=0$ and $P(t)=M$ ave solutions ("equilibrium solutions")

Definition 9.1 (First order ODE):
A first order "ordinary differential equation" is an equation of the form:

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{4}
\end{equation*}
$$

where F is some arbitrary function and y is understood to be an unknown function of x. For example,

$$
y^{\prime}=x y
$$

is of the form (4) with $F\left(x, y, y^{\prime}\right)=y^{\prime}-x y$ A function $f(x)$ is called a "solution" of the differential equation if (y) is satisfied with $y=f(x)$ and $y^{\prime}=f^{\prime}(x)$.
Example 9.2:
Show that every member of the family of functions

$$
y=\frac{1+c e^{t}}{1-c e^{t}}
$$

is a solution of the differential equation

$$
y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)
$$

Solution:
We use the quotient vile to differentiate:

$$
\begin{aligned}
y^{\prime} & =\frac{\left(1-c e^{t}\right)\left(c e^{t}\right)-\left(1+c e^{t}\right)\left(-c e^{t}\right)}{\left(1-c e^{t}\right)^{2}} \\
& =\frac{c e^{t}-c^{2} e^{2 t}+c e^{t}+c^{2} e^{2 t}}{\left(1-c e^{t}\right)^{2}}=\frac{2 c e^{t}}{\left(1-c e^{t}\right)^{2}}
\end{aligned}
$$

The right side of the differential equation becomes

$$
\begin{aligned}
\frac{1}{2}\left(y^{2}-1\right) & =\frac{1}{2}\left[\left(\frac{1+c e^{t}}{1-c e^{t}}\right)^{2}-1\right]=\frac{1}{2}\left[\frac{\left(1+c e^{t}\right)^{2}-\left(1-c e^{t}\right)^{2}}{\left(1-c e^{t}\right)^{2}}\right] \\
& =\frac{1}{2} \frac{4 c e^{t}}{\left(1-c e^{t}\right)^{2}}=\frac{2 c e^{t}}{\left(1-c e^{t}\right)^{2}}
\end{aligned}
$$

Therefore, for every value of c, the given function is a solution of the differential equation.
Example 9.3 (Initial value problem):
Find a solution of the differential equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$ that satisfies the initial condition $y(0)=2$.

Solution:
Substituting the values $t=0$ and $y=2$ into the formula

$$
y=\frac{1+c e^{t}}{1-c e^{t}}
$$

from Example 7.1.3, we get

$$
2=\frac{1+c e^{0}}{1-c e^{0}}=\frac{1+c}{1-c}
$$

$c=\frac{1}{3}$ solves this equation $\Rightarrow y=\frac{1+\frac{1}{3} e^{r}}{1-\frac{1}{3} e^{t}}=\frac{3+e^{r}}{3-e^{t}}$
§9.2 Existence and Uniqueness
Example 9.4 (Direction Fields):
Suppose we are asked to sketch the graph of the solution of the initial value problem

$$
y^{\prime}=x+y, \quad y(0)=1
$$

$\left(x_{1}, y_{1}\right)$ is $x_{1}+y_{1}$
We can also draw short line segments at, a number of points (x, y) with slope $x+y$:

This is called a "direction field". Far instance, the line segment through (1,2) has slope $1+2=3$.

Definition 9.2:
Suppose we have a first-arder differential equation of the form
(1) $\quad y^{\prime}=F(x, y) \quad$ "normal form" where $F(x, y)$ is a continuous function of both its arguments simultaneously in some domain D of the $x-y$ plane.
The slope of the solution curve through (x, y) is $F(x, y)$. Indicating such slopes on the $x-y$-plane in terms of line segments gives a direction field.
A solution or "integral" of (1) over th interval $x_{0} \leq x \leq x_{1}$ is a single-valued function $y(x)$ with a continuous first derivative $y^{\prime}(x)$ defined on $\left[x_{0}, x_{1}\right]$ such that for $x_{0} \leq x \leq x_{1}$:
i) $(x, y(x))$ is in D, whence $F(x, y(x))$ is defined
ii) $y^{\prime}(x)=F(x, y(x))$

Definition 9. 3 (Zipschitz condition):
A function $F(x, y)$ defined an a domain D is said to satisfy Lipschitz conditions with respect to y for the constant $k>0$ if for every x, y_{1}, y_{2} such that $\left(x, y_{1}\right),\left(x, y_{2}\right)$ are in D :

$$
\begin{equation*}
\left|F\left(x_{1} y_{1}\right)-F\left(x_{1} y_{2}\right)\right| \leqslant k\left|y_{1}-y_{2}\right| \tag{2}
\end{equation*}
$$

Theorem 9.1:
If the function $F(x, y)$ is continuous in both of its arguments and satisfies the Lipschitz condition for y on the rectangle

$$
(R):\left|x-x_{0}\right| \leqslant a,\left|y-y_{0}\right| \leqslant b
$$

then there exists a unique solution to the initial value problem

$$
y^{\prime}=F(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

defined on the interval $\left|x-x_{0}\right|<h$ where

$$
h=\min (a, b / M), M=\max |F(x, y)|,(x, y) \in(R) .
$$

Remark 9.1:
In other wards, two integral curves cannot meet or intersect at any point of R.
Observe that without the additional requirement of a Lipschitz condition uniqueness need not follow. Far consider the differential equation

$$
\frac{d y}{d x}=y^{\frac{1}{3}}
$$

$F(x, y)=y^{\frac{1}{3}}$ is continuous at $(0,0)$. But there are two solutions passing through $(0,0)$, namely
i) $y=0$
ii) $\begin{cases}y=\left(\frac{2}{3} x\right)^{3 / 2} & x \geq 0 \\ y=0 & x \leq 0\end{cases}$
$y^{\frac{1}{3}}$ does not satisfy the Lipschitz condition at $y=0$:
for $y_{1}=\delta_{1} \quad y_{2}=-\delta_{1} \quad\left|\frac{f\left(y_{1}\right)-f\left(y_{2}\right)}{y_{1}-y_{2}}\right|=\frac{1}{\delta^{2 / 3}}$ which is unbounded for 8 arbitrarily small.
§9.3 Solution Methods:
Definition 9.4 (linear ODEs):
A general first order ODE is called "linear" if it can be written in the form

$$
\begin{equation*}
a_{0}(x) y^{\prime}+a_{1}(x) y=b(x) \tag{1}
\end{equation*}
$$

where $a_{0}(x), a_{1}(x), b(x)$ are continuous functions of x an some interval I.
Remark 9.2:
Equation (1) can be brought to normal form if $a_{0}(x) \neq 0$ on I :

$$
\begin{equation*}
y^{\prime}=q(x)-p(x) y \tag{2}
\end{equation*}
$$

where $p(x)=\frac{a_{1}(x)}{a_{0}(x)}, \quad q(x)=\frac{b(x)}{a_{0}(x)}$.
Definition 9.5 (linear homogeneous eq.):
A linear first order ODE is homogeneous if $q(x)=0$, namely,

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=0 \tag{3}
\end{equation*}
$$

Equation (2) is then called "linear inhomogeneous".

Let now $p(x)$ be continuous an an interval $I \subset \mathbb{R}$ and let $J \subset \mathbb{R}$ be closed. Then $F(x, y):=-p(x) y$ is continuous in x and satisfies the Lipschitz condition in y an the rectangular area $R=I \times J$.
$\xrightarrow{T h .9 .1} \exists$ unique solution to (3) with

$$
y\left(x_{0}\right)=y_{0} \quad \text { for } \quad\left(x_{0}, y_{0}\right) \in I \times y .
$$

Proposition 9.1:
The solutions to (3) are parametrized by

$$
y= \pm C_{1} e^{-\int p(x) d x}
$$

where $C_{1} \in \mathbb{R}$ is fixed through the initial value.
Proof:
Equation (3) can be rewritten as

$$
\frac{y^{\prime}(x)}{y}=\frac{d}{d x} \log |y(x)|=-p(x) .
$$

Integration then gives

$$
\log |y(x)|=-\int p(x) d x+C_{1}
$$

or

$$
y= \pm C_{1} e^{-\int p(x) d x}, \quad C_{1}=e^{C}>0 .
$$

We next want to solve the general case, namely

$$
\frac{d y}{d x}+p(x) y=q(x) \quad\left(\begin{array}{c}
\text { inhomogeneous } \\
\text { case) }
\end{array}\right.
$$

Multiplication with a factor $\mu(x) \neq 0$ gives:

$$
\begin{equation*}
\mu(x) y^{\prime}(x)+\mu(x) p(x) y(x)=\mu(x) q(x) . \tag{4}
\end{equation*}
$$

Now choose $\mu(x)$ such that

$$
\mu^{\prime}(x)=p(x) \mu(x)
$$

ie. $\mu(x)$ satisfies the linear homogeneous eq. (solution given by Prop. 9.1)
\Rightarrow eq. (4) becomes

$$
\begin{equation*}
\frac{d}{d x}[\mu(x) y(x)]=\mu(x) q(x) \tag{5}
\end{equation*}
$$

Integration gives

$$
\mu(x) y=\int \mu(x) q(x) d x+C
$$

with C an arbitrary constant. Solving for y, we then arrive at the following:
Proposition 9.2 :

$$
\begin{equation*}
y=\frac{1}{\mu(x)} \int \mu(x) q(x) d x+\frac{c}{\mu(x)}=y_{p}(x)+y_{p}(x) \tag{6}
\end{equation*}
$$ "particular" "homogereaon"

is a solution to the linear inhomogeneous ODE (2) if $\mu(x)$ is a solution to the homogeneous ODE $\mu^{\prime}(x)=p(x) \mu(x)$.
Remark 9.3:
Again, by Th. 9.1 , the solution (G) is unique once C is fixed using the initial value $y\left(x_{0}\right)=y_{0}$.
Example 9.5:
$y^{\prime}+x y=x$. This is a linear first order ODE in standard form with $p(x)=q(x)=x$.
Solution:

$$
\begin{aligned}
\quad \mu(x) & =e^{\int x d x}=e^{\frac{x^{2}}{2}} \\
\Rightarrow \frac{d}{d x}\left(e^{x^{2} / 2} y\right) & =x e^{x^{2} / 2}
\end{aligned}
$$

and after integration

$$
\begin{aligned}
& e^{x^{2} / 2} y=\int x e^{x^{2} / 2} d x+C=e^{x^{2} / 2}+C \\
\Rightarrow \quad & y=1+C e^{-x^{2} / 2}
\end{aligned}
$$

For the initial condition $y(0)=1$ we get

$$
y=1, \quad(C=0) ;
$$

and for $y(0)=a$ we get

$$
y=1+(a-1) e^{-x^{2} / 2},(C=a-1)
$$

